Sport-kaliningrad.ru

Спорт Калининград
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Площадь трапеции с откосами

Трапеция

AK = KB, AM = MC, BN = ND, CL = LD

m =a + b
2

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a – h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a – c· cos α – d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с =hd =h
sin αsin β

Площадь трапеции

Площадь трапеции, формулы расчета, определение,
способы найти площадь, нахождение площади
через величины и примеры площади трапеции.

Все формулы расчета площади трапеции
через основания и угол, периметр, радиус,
синус и две стороны, диагональ,
высоту, среднюю линию.

Площадь трапеции, можно измерить, в единицах
измерения в квадрате: мм 2 , см 2 , м 2 и км 2 и так далее.

Площадь трапеции через окружность вписанную можно
найти, зная радиус окружности вписанной в трапецию
и некоторые другие величины.

  1. Формулы площади трапеции
  2. Площадь любых трапеций
  3. Площадь равнобедренной трапеции
  4. Определения трапеции
  5. Элементы трапеции

Формулы площади трапеции

Площадь любых трапеций

Ⅰ. Площадь трапеции через основания и высоту:


[ S = frac <2>cdot h ]
a,b — основания трапеции;
h — высота трапеции;

Ⅱ. Площадь трапеции через высоту и среднюю линию:


[ S = mh ]
m — средняя линия трапеции;
h — высота трапеции;

Ⅲ. Площадь трапеции через диагонали и угол между ними:

[ S =frac<1><2>d_1d_2 cdot sin alpha ]
( d_1, d_2 ) ​​- диагонали трапеции;
sin α — синус угла альфа в трапеции;

Ⅳ. Площадь трапеции через периметр, высоту и боковые стороны:

[ S = frac<2>h ]
P — периметр трапеции;
c,d — боковые стороны трапеции;
h — высота трапеции;

Ⅴ. Площадь трапеции через основания и боковые стороны:
[ S = frac <2>cdot sqrt<2a-2b>)^2> ]
a,b — основания трапеции;
с,d — боковые стороны трапеции;

Ⅵ. Площадь трапеции через основания и углы:

a,b — основания трапеции;
α — угол при основании a в трапеции;
β — угол при основании b в трапеции;
sin α — синус угла альфа в трапеции;
sin β — синус угла бетта в трапеции;

Площадь равнобедренной трапеции

Ⅰ. Площадь трапеции через синус угла, среднюю линию и боковую сторону:

[ S = ld cdot sin α ]

l — средняя линия равнобедренной трапеции;
d — боковая сторона равнобедренной трапеции;
α — угол альфа при боковой стороне d равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Ⅱ. Площадь трапеции через диагонали и синус угла:

[ S = frac <2>cdot sin α ]

d — диагональ равнобедренной трапеции;
α — угол между двумя диагоналями в равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Ⅲ. Площадь трапеции через радиус вписанной окружности и основания:

r — радиус вписанной окружности равнобедренной трапеции;
a, b — основания равнобедренной трапеции;

Ⅳ. Площадь трапеции через основания:

a, b — основания равнобедренной трапеции;

Читать еще:  Откос пластиковый шириной 250 мм

Ⅴ. Площадь трапеции через основания и среднюю линию:

l — средняя линия равнобедренной трапеции;
a, b — основания равнобедренной трапеции;

Ⅵ. Площадь трапеции через синус угла и стороны:

[ S = c cdot sin α cdot (a-c cdot cos α) ]

a — нижнее основание равнобедренной трапеции;
с — боковая сторона равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;
cos α — косинус угла альфа в равнобедренной трапеции;

Ⅶ. Площадь трапеции через угол и радиус вписанной окружности:

r — радиус вписанной окружности равнобедренной трапеции;
sin α — синус угла альфа в равнобедренной трапеции;

Определения трапеции

Трапеция — это четырехугольник, у которого две
стороны параллельны а две другие нет.

Зная углы трапеции, можно определить, к какому виду
она относится. Всего различают три вида трапеций:

  • Обычная / стандартная трапеция: четыре угла и четыре стороны не равны.
  • Равнобедренная / равнобочная / равнобоковая трапеция:
    два угла при основании равны, две боковые стороны равны.
  • Прямоугольная / прямаятрапеция: один из углов прямой.

Площадь равнобедренной, прямоугольной трапеции,
можно найти через формулы площади обычной трапеции.

Формул, с помощью которых, можно найти площадь трапеции
через описанную окружность около трапеции, не существует.

Элементы трапеции

Любая трапеция является четырехугольником,
поэтому у трапеции 4 угла и 4 стороны.

Основание трапеции — это сторона, противолежащая
сторона которой параллельна.

Боковая сторона трапеции — это сторона, противолежащая
сторона которой не параллельна.

Средняя линия трапеции — это отрезок, соединяющий
середины боковых сторон трапеции.

Диагональ трапеции — это отрезок, соединяющий две
вершины, которые лежат в разных концах трапеции.

Высота трапеции — это отрезок, соединяющий меньшее основание с большим,
образуя при этом два угла по 90 градусов на большей стороне.

Основания у трапеции не могут быть никогда равны.
Боковые стороны могут быть равны только,
если трапеция — равнобедренная.

Площадь трапеции — это площадь геометрической фигуры,
у которой четыре стороны и четыре угла, причем только
две стороны параллельны а остальные нет.

Самые простые формулы площади трапеции

В этой формуле a, b обозначают основания трапеции, h — высоту. Для удобства восприятия в этой статье знаки умножения отмечены символом (*) в формулах, хотя в официальных справочниках знак умножения обычно опускают.

Дано: трапеция с двумя основаниями, равными 10 и 14 см, высота составляет 7 см. Чему равна площадь трапеции?

Разберем решение этой задачи. По этой формуле сначала нужно найти полусумму оснований: (10+14)/2 = 12. Итак, полусумма равняется 12 см. Теперь полусумму умножаем на высоту: 12*7 = 84. Искомое найдено. Ответ: площадь трапеции равна 84 кв. см.

Вторая известная формула гласит: площадь трапеции равна произведению средней линии на высоту трапеции. То есть фактически вытекает из предшествующего понятия средней линии: S=m*h.

Площадь криволинейной трапеции

Криволинейная трапеция представляет из себя плоскую фигуру, ограниченную графиком неотрицательной непрерывной функции y = f(x), определенной на отрезке [a;b], осью абсцисс и прямыми x = a, x = b. По сути, две ее стороны параллельны друг другу (основания), третья сторона перпендикулярна основаниям, а четвертая представляет из себя кривую, соответствующую графику функции.

Читать еще:  Ротбанд откосы с улицы

Криволинейная трапеция

Площадь криволинейной трапеции ищут через интеграл по формуле Ньютона-Лейбница:

Так вычисляются площади различных видов трапеций. Но, помимо свойств сторон, трапеции обладают одинаковыми свойствами углов. Как у всех существующих четырехугольников, сумма внутренних углов трапеции равна 360 градусов. А сумма углов, прилежащих к боковой стороне, — 180 градусам.

Площадь трапеции

В математике существует несколько способов нахождения площади трапеции в зависимости от данных величин. Рассмотри эти формулы:

  • Площадь через основание и высоту. Если нам даны величины оснований трапеции и её высота, то для нахождения площади используем следующую формулу: S = 1/2 * h (a + b).
  • Площадь через среднюю линию и высоту. Если нам даны величины двух оснований и высоты или только высоты и средней линии, которая равна полусумме оснований, то можем найти площадь трапеции по следующей формуле: S = m * h.
  • Площадь через прямоугольник и два треугольника. Если провести трапеции вершины из углов при меньшем основании, то трапеция разделится на прямоугольник и два треугольника, следовательно, площадь такой трапеции будет равна сумме площадей этих фигур: S (трапеции) = S (квадрата) + S (треугольника 1) + S (треугольника 2).

Площадь трапеции будет равна полусумме ее оснований, умноженной на высоту. В виде формулы это записывается в виде выраженияS = ( ( a + b ) * h ) / 2где S — площадь трапеции, a,b — длина каждого из оснований трапеции, h — высота трапеции.

Есть еще одна простая формула для подсчета ее площади. Согласно ней площадь трапеции равна произведению ее средней линии на высоту трапеции и записывается в виде: S = m * h, где S — площадь, m — длина средней линии, h — высота трапеции. Данная формула больше подходит для задач по математике, чем для бытовых задач, так как в реальных условиях вам не будет известна длина средней линии без предварительных расчетов. А известны вам будут только длины оснований и боковых сторон.
В этом случае площадь трапеции может быть найдена по формуле:

S = ( ( a + b ) / 2 ) * √ c2 — ( ( b — a )2 + c2 — d2 / 2 ( b — a ) )2

где S — площадь, a,b — основания, c,d — боковые стороны трапеции.

Все формулы площади трапеции

Вам будет интересно: Слово «прощелыга» значение и происхождение

В геометрии существует множество формул нахождения площадей фигур, что является как плюсом, так и минусом. Как же найти площадь трапеции?

  • Через диагонали и вертикальный угол. Для этого умножьте половину произведения диагоналей на угол между ними.
  • Площадь трапеции через основание и высоту. Половину суммы оснований умножьте на высоту трапеции, проведенную к одному из оснований.
  • При помощи всех сторон. Сумму оснований поделите пополам и умножьте на корень. Под корнем: сторона в квадрате минус дробь, в числителе которой — разница оснований в квадрате плюс разница боковых сторон, каждая из которых в квадрате, а в знаменателе — разница оснований, умноженная на два.
  • Через высоту и медиану. Сумму оснований трапеции поделите пополам и умножьте на высоту, проведенную к основанию фигуры.
  • Для равнобедренной трапеции также существует своя формула нахождения площади. Чтобы найти площадь данной фигуры, умножьте квадрат радиуса на четыре и поделите на синус угла альфа.

    Читать еще:  Уголок пвх для откосов с сеткой

    Примеры решения задач

    Пример 1. Пусть задана прямоугольная трапеция, медиана которой равна 12 см и острый угол при основании составляет 45 °. Также известно, что боковая сторона, которая не является высотой, составляет 10 см. Необходимо рассчитать площадь этой фигуры.

    Если рассмотреть треугольник прямоугольный, который образован двумя боковыми сторонами и заданным острым углом, то можно рассчитать высоту фигуры:

    h = d*sin (α) = 10*sin (45 °) = 7,071 см.

    Поскольку из условия задачи известна медиана, то можно применить общую формулу для определения площади трапеции:

    S = h*M = 7,071*12 = 84,852 см 2 .

    Любопытно отметить, что для решения этой задачи не понадобилось знать длины каждого из оснований.

    Пример 2. Известно, что большее из оснований трапеции прямоугольной имеет длину 12 см, ее наклонная сторона равна 10 см, а угол при основании составляет 53,13 °. Необходимо выяснить, как найти площадь прямоугольной трапеции из этих данных.

    Для решения задачи удобно использовать следующие общепринятые обозначения:

    • α = 53,13 °;
    • b = 12 см;
    • d = 10 см.

    Рассматривая треугольник с прямым углом, который заключен между сторонами b-a, d и c, можно вычислить все неизвестные длины отрезков:

    • c = d*sin (α);
    • b-a = d*cos (α), откуда a = b — d*cos (α).

    Общая формула для площади трапеции приобретает вид:

    S = M*h = (a+b)/2*c = (2*b — d*cos (α))*d*sin (α)/2.

    Все величины в формуле известны из условия задачи. Если их подставить, то получится ответ: 72 см 2 .

    Пример 3. Известно, что в трапеции с прямыми углами диагонали составляют 7 см и 11 см, высота фигуры равна 5 см. Необходимо найти ее площадь.

    Из теоремы Пифагора следует, что каждое из оснований трапеции может быть вычислено следующим образом:

    • a = (D1 2 -c 2 )^0,5 = (49−25)^0,5 = 4,9 см;
    • b = (D2 2 -c 2 )^0,5 = (121−25)^0,5 = 9,8 см.

    Тогда площадь фигуры составит: S = (a+b)*c/2 = (4,9+9,8)*5/2 = 36,75 см 2 .

    Таким образом, прямоугольная трапеция является простой фигурой, для вычисления площади которой удобно воспользоваться теоремой Пифагора. Существуют несколько формул для определения величины S, параметрами которых являются длины сторон и непрямые углы.

    голоса
    Рейтинг статьи
  • Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector